## FRIEDEL-CRAFTS REACTIONS - AN OVERVIEW

## General thoughts

- Friedel-Crafts reactions involve electrophilic substitution of aromatic rings
  - there are two types Alkylation and Acylation
  - alkylation involves the substitution of alkyl groups such as  $CH_3$ ,  $C_2H_5$  and  $C_3H_7$
  - acylation involves the substitution of acyl groups such as CH<sub>3</sub>C=O
  - in both cases a catalyst is needed
  - this is because the attacking species isn't a strong enough electrophile
  - it hasn't enough positive character to persuade benzene to react
  - haloalkanes and acyl chlorides have polar bonds but the C isn't positive enough

 $CH_{\overline{3}}-CH_{\overline{2}}^{\delta+}Cl^{\delta-}$ a haloalkane



- the catalyst makes the attacking species more positive
- anhydrous aluminium chloride is the catalyst
- it works because it is a Lewis acid
- in AlCl<sub>3</sub> the aluminium is electron deficient it has 6 electrons in its outer shell
- in both cases the reagent has a polar C-Cl bond
- the carbon atom has a  $\delta\!\!+$  charge but it isn't enough to tempt the benzene
- the aluminium chloride increases the charge so that benzene become interested

## Action of AlCl<sub>3</sub>

- the aluminium atom is electron deficient with only 6 in its outer shell
  - it acts as a Lewis acid as it can accept a lone pair to make up its octet



complete octet tetrahedral shape

- it can do this by attracting a chlorine atom away from a C-Cl bond
- the more the Cl is attracted by the  $AlCl_3$  the more polar the C-Cl bond gets
- in the extreme case it pulls the chlorine right off leaving a C<sup>+</sup> behind

| Alkylation | RC <i>l</i>   | + | AlCl <sub>3</sub> | <del>~~~``</del> | $AlCl_4^-$                                | + | R⁺   |
|------------|---------------|---|-------------------|------------------|-------------------------------------------|---|------|
| Acylation  | RCOC <i>l</i> | + | AlCl <sub>3</sub> | <u> </u>         | <b>A<i>I</i>C</b> <i>l</i> ₄ <sup>−</sup> | + | RCO⁺ |

• the aromatic ring will now attack and electrophilic substitution takes place

- Friedel-Crafts reactions

Alkylation substitutes an alkyl (e.g. methyl, ethyl) group

| reagents     | a haloalkane (RX) and anhydrous aluminium chloride $AlCl_3$ |
|--------------|-------------------------------------------------------------|
| conditions   | room temperature; dry inert solvent (ether)                 |
| electrophile | a carbocation $R^+$ (e.g. $CH_3^+$ )                        |
| equation     | $C_6H_6 + C_2H_5Cl \longrightarrow C_6H_5C_2H_5 + HCl$      |

mechanism



| Industrial |                                                                       |
|------------|-----------------------------------------------------------------------|
| method     | The industrial preparation of similar compounds is slightly different |
|            | Alkenes are used instead of haloalkanes - see other notes             |

Acylation substitutes an acyl (e.g. ethanoyl) group the aluminium chloride catalyst acts in the same as with alkylation

| reagents     | an acyl chloride (RCOCl) and anhydrous $AlCl_3$ |
|--------------|-------------------------------------------------|
| conditions   | reflux 50°C; dry inert solvent (ether)          |
| electrophile | $RC^{+}=O  (e.g. CH_{3}C^{+}O)$                 |
| product      | carbonyl compound (aldehyde or ketone)          |
| equation     | $C_6H_6$ + $CH_3COCl$ > $C_6H_5COCH_3$ + $HCl$  |

mechanism



2